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Abstract

There has been interest in the use of chaotic signals for radar, but most researchers consider

only a few chaotic systems and how these signals perform for the detection of point targets. The

range of possible chaotic signals is far greater than what most of these researchers consider, so

to demonstrate this, I use a chaotic map whose parameters may be adjusted by a numerical

optimization routine, producing different chaotic signals that are optimized for different situations.

It is also suggested that any advantage for chaotic signals may come in the detection of complex

targets, not point targets, and I compare the performance of chaotic signals to a standard radar

signal, the linear frequency modulated chirp.
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Radar and sonar are used to detect remote objects by transmitting a signal

and detecting the reflection of the signal from the target object. When radar and

sonar were first developed, signals were generated by analog oscillators, so the

signals used in radar or sonar were either periodic signals or sinusoidal signals in

which the frequency was swept. Noise signals from analog noise sources were also

used. The development of fast digital to analog convertors and fast computers

has recently allowed digital synthesis to be used for generating radar and sonar

signals, but much conventional wisdom gained from experience with periodic or

noise signals must be reconsidered.

In this paper, a chaotic map with adjustable parameters is used to generate

radar signals. Digital synthesis techniques allow a radar engineer to generate

any signal that they can imagine, so the advantage of chaotic systems is not in

the chaotic signals themselves, but in the ease with which complex, broad band

signals may be designed. Broad band signals are desirable for radar because they

allow the determination of distance with greater resolution. Chaotic signals are

sometimes described as being noiselike, but it is shown in this paper that for

radar applications, chaos is not noise, so known results that hold for noise signals

may not be true for chaotic signals.

Most radar theory concerns the detection of point targets in Gaussian noise.

In this work, the parameters of a chaotic map are optimized to match the chaotic

signal to a complex target consisting of several point scatterers, a problem which

does not have a simple solution. To make the simulations more realistic, inter-

ference from other scatterers is included. This interference is known as clutter,

and there is no general theory for a complex target in clutter.

I. INTRODUCTION

In the fields of radar and sonar, transmitted signals that are reflected from objects are

used to determine the distance to and radial velocity of those objects [? ]. Usually, periodic

signals or combinations of periodic signals have been used for these applications, but other

types of signals such as noise or chaos have also been explored. Chaotic signals may have

a large bandwidth, which is useful in increasing the precision with which distances may be
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measured. To understand this principle, think of a pulse or a wave packet: the more the

wave packet is localized in time, the greater the spread of frequencies used to create the wave

packet The application of chaos to radar or sonar has been considered by several groups [? ?

? ? ? ? ? ? ]. To measure distance in radar, one actually measures a delay time, so signals

with broader bandwidths increase the precision with which distance may be measured.

Modern digital-to-analog converters have become fast enough to allow for the digital

synthesis of some radar signals, which means that any signal that can be described can by

synthesized. In this regard, there is nothing unique about chaotic signals applied to radar,

as radar engineers can design any signal that they want. The advantages of chaotic systems

are in signal design- chaotic systems naturally generate broad band signals. This paper will

focus on using a simple chaotic system to design a variety of different radar signals.

The theory of using radar for detecting point objects in Gaussian noise is well known[?

], but less is known about complex objects, which contain multiple scattering centers. Non-

Gaussian noise also causes problems, as does clutter, which is any reflection from objects

other than the target. For these reasons, the chaotic systems below will be used to design

radar signals which are matched to complex targets in the presence of clutter.

There has been work on the linear optimization of radar signals to improve signal detection

in non-Gaussian noise, or to match the signal to a particular target for target identification[?

? ] . Since I am using a nonlinear chaotic system to generate signals, I must use numerical

optimization to vary the parameters of the chaotic system to optimize the chaotic signal for

specific applications. The idea of using optimization to improve chaotic signals for certain

applications was first suggested by Homer et al[? ]. The structure of the particular chaotic

system that I use is arbitrary, and many other structures are possible.

II. RADAR AND SONAR BASICS

A. Ambiguity Functions

The ambiguity function is a standard measure of a radar signal[? ] . The ambiguity

function shows the probability of detecting a target on a 2 dimensional plot, where one

axis is delay time (distance) and the other axis is Doppler shift (radial velocity). The true

target location is plotted at the origin. The ambiguity function shows the range and Doppler
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resolution of a radar signal for a point target, and reveals any range-Doppler coupling, or

any range ambiguities[? ]. Ambiguity in the range can be caused by a periodic signal, for

example, in which case distances that are different by 1 signal wavelength appear to be

the same distance, and range-Doppler coupling means that it is impossible to distinguish a

stationary target at one location from a moving target at a different location.

In the work described below, complex targets are considered, clutter (interference from

other targets) is present, and we are interested in ability of the radar signal to highlight

one target over another, which is not shown in the ambiguity function. Nevertheless, the

ambiguity functions are plotted to give some idea of the nature of the chaotic signals.

B. Broadband Ambiguity

The range to the target as a function of time is R (t) = R0 + vrt , where R0 is the initial

range and vr is the radial component of the velocity. Assuming the target velocity is much

slower than the signal velocity (true for radar), the transmitted signal at time t1 then travels

a total path length of 2R(t1) , for a phase change of 4πR (t1) /λ , where λ is the wavelength.

The Doppler frequency is the derivative with respect to time of this phase shift, which may

be simplified to yield

fd =
2f

c
vr (1)

where f is the signal frequency, fd is the resulting Doppler frequency, and c is the signal

velocity. Eq. ?? shows that if the transmitted signal contains many frequencies, then there

will also be many Doppler frequencies[? ] .

The ambiguity function is defined as
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where s(t) is the signal under consideration and TR is a time delay. The ambiguity function

looks like the autocorrelation function for the signal s(t), except for the presence of the

exponential term, which shifts all the frequencies in s∗(t + TR) by the amount fd . For a

fixed Doppler frequency fd , the ambiguity function is the cross correlation between the

signal s(t) and its frequency shifted version.
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For a narrow band signal, a single Doppler frequency fd may be used in eq. ??, but

for a broad band signal, a band of frequencies defined by eq. ?? is necessary [? ? ]. To

actually calculate the ambiguity function, the signal s(t) is expanded or compressed along

the time axis to simulate a Doppler shifted version of s(t), which will be called sd(t). We are

working with digitized signals, so the discreet version of eq. ?? is calculated, with s∗d(t+TR)

replacing s∗t (t+ TR) e2πjfdt in eq. ??. The frequencies in s∗d(t + TR) have been shifted by

the time compression or expansion, so the frequency shift from the exponential term is no

longer necessary.

An ambiguity diagram, such as those plotted in fig. ??, shows the probability of detecting

a target at a certain range and Doppler shift. Traditionally, the actual target location is

at the origin. Large peaks away from the origin cause ambiguity- it is ambiguous whether

the peak is from the target at the origin or from some other nearby target, so a desirable

ambiguity diagram has all the probability concentrated in one peak near the origin.

If the product of the time length and bandwidth of different signals is the same, then the

volume under their ambiguity diagrams is the same[? ? ] . In practice, this means that

improving the range resolution of a signal with a fixed time length and bandwidth, which

results in a contraction of the central peak of the ambiguity diagram along the range axis,

must result in the ambiguity diagram expanding along the Doppler axis, making the Doppler

resolution worse. Improving Doppler resolution also results in worse range resolution. In

practice, radar engineers may seek to move ambiguity- i.e, they may engineer signals that

reduce the probability of false detection in certain parts of the range-Doppler space [? ?

], although this results in increasing the probability of false detection in other parts of the

space. In this paper, adaptive chaotic maps will be used to move ambiguity on the ambiguity

plot.

Figure ?? shows ambiguity functions for a point target for a chaotic signal defined below

(eq. ??-??), a linear frequency modulated (LFM) chirp with the same frequency and time

span, and a sine wave frequency modulated with a uniformly distributed noise signal. The

LFM chirp is a commonly used radar signal in which the signal frequency is swept continu-

ously in a linear fashion between 2 values. The map that generated the chaotic signal has a

largest Lyapunov exponent of 0.097 bits/iteration.

The length of each of the signals in fig. ?? was 8192 samples, and some additional

processing was used with each signal before calculating the ambiguity diagram. The finite
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FIG. 1: Ambiguity functions. αd is the fractional Doppler shift (the amount by which the time

axis is expanded), t is the delay in time steps, and χ is the value of the ambiguity function. The

time step in the simulation ws set as 1, so for higher time steps, all factors will be multiplied by the

appropriate scaling factor. (a) Ambiguity function for 8192 samples of a chaotic signal described

by eqs. ??-?? below. The map that generates the chaotic signal has a largest Lyapunov exponent

of 0.097 bits/iteration. (b) Ambiguity function for a linear frequency modulated (LFM) chirp with

the same frequency span and length as the chaotic signal in (a). (c) Ambiguity function for a signal

frequency modulated by uniformly distributed noise, with the same frequency span and time length

as the signals in (a) and (b).
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length of these signals imposes an additional modulation of the form of sin(x)/x on the cross

correlation[? ] . In order to minimize the finite length effects, each signal is first multiplied

by a time window that has an amplitude of 1 in the middle of the signal, and a small

amplitude at the ends of the signal. The window in this case is the Blackman window[? ],

described by w (t) = 0.42 − 0.5 cos(2πt/N) + 0.08 cos (4πt/N), where N is the number of

samples in the signal.

The ambiguity diagram for the chaotic signal has a large central peak, with smaller peaks

about 15 dB below the main peak (15 dB is a factor of 101.5 ). These side peaks will obscure

a small target that is near the main target but whose amplitude is more than 15 dB below

the amplitude of the main target. The side peaks are known as sidelobes, and low sidelobes

are desirable.

Figure ??(b) shows the ambiguity diagram for an LFM chirp, which is a commonly used

radar signal because of its low sidelobes. The chirp does have a ridge in between the range

and Doppler axes, which means that a Doppler shift is not distinguishable from a change in

distance.

C. Chaos vs. Noise

There is a well known result from radar and sonar analysis that states that an LFM chirp

signal will have a better signal to noise plus clutter ratio (SINR) in a clutter environment

than a noiselike signal[? ]. This analysis is based on the properties of the ambiguity diagram.

One can consider a group of scatterers distributed with a uniform density over a fixed area

(the clutter). The distribution can be along both the range and Doppler axes. A schematic

representation of this clutter is shown as the shaded area on fig. ?? (a-b). The amount of

interference produced by this clutter will be proportional to the volume that is under the

intersection of the ambiguity surface and the scattering area. The ambiguity plot for the

LFM chirp (fig ??(b)) is large only over a small area, so the volume that is also within the

scattering area will in general be small, as can be seen in fig. ??(a); the LFM chirp ambiguity

is large only within the diagonal ellipse. The noise ambiguity plot (fig ??(c)) has a large

central peak, surrounded by an area of relatively uniform and non-negligible amplitude,

shown as a large circle in fig. ??(b). From the analysis in Stewart and Westerfield[? ], the

volume under the intersection of the ambiguity surface and the clutter area is larger for the
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FIG. 2: Schematic representation of the ambiguity plots for an LFM chirp (a) or noise (b) in the

presence of clutter (shaded area). α is the Doppler shift axis, and t is the time axis.

noise signal than for the LFM chirp, so the chirp has a higher SINR than the noise signal.

The above analysis does not apply to chaos because chaos is not noise. The ambiguity

surface for the chaotic signal in fig. ??(a) is much less uniform than the ambiguity surface

for the noise signal. These nonuniform areas can be moved around by choosing different

chaotic signals, so in principle, for a particular set of scatterers, it could be possible for the

chaotic signal to have a higher SINR than a chirp signal. One object of this paper is to look

for such chaotic signals.

D. Chaos and Radar

There have been efforts to apply chaotic signals to radar [? ? ? ? ? ? ? ? ]. In

most work, only a few well known chaotic systems have been studied, which may give the

false impression that there are only a few types of chaotic signals available. Because chaotic

systems are nonlinear, there are actually an infinite number of chaotic signals that may

be created. One could think of the space of chaotic systems as spanning the range from
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periodic deterministic signals to purely random noise. It is true that with modern digital

synthesis techniques, any desired signal can be synthesized, and in this respect, there is

nothing special about chaotic signals; all the usual laws of signal processing still apply to

these broad band signals. An advantage of chaotic systems may be not in the actual signals

produced, but in the ease with which broad band signals may be designed and synthesized.

Chaotic systems are naturally broad band, and their autocorrelation functions approach

zero after some time, so chaos may be a simple and natural way to produce high resolution

radar (or sonar) signals.

III. ADAPTIVE SIGNALS

There has been some work on designing chaotic signals to have specific properties [? ?

], but there are no tools that will fit all situations. Homer et al[? ] defined a nonlinear

map with adjustable parameters, and used a minimization routine to optimize the map

parameters for creating different chaotic communications signals. Taking their lead, I define

a simple nonlinear map with adjustable parameters and vary the parameters to optimize the

resulting chaotic signal for different radar situations . The chaotic signals were optimized

for 2 different situations; first the maps were optimized to increase the returned signal from

one complex target compared to a different, nearby target; second, the chaotic signal was

optimized to improve the signal to noise plus interference ratio (SINR) for a complex target

in spatially extended clutter. It seems likely that any advantage from a chaotic signal will

be found when looking at complex targets- in numerical experiments, no advantage with

point targets was seen.

Callegari et al [? ] have shown that in situations where they can design a chaotic signal

to have specific autocorrelation properties, chaos performs at least as well as random noise,

so I compare optimized chaotic signals to uniformly distributed random noise signals, to see

if there is any advantage in using optimized chaotic signals.

There are other approaches to optimizing radar signals. Pillai et al[? ] designed optimal

pairs of transmit pulses and receiver filters to optimize the output signal to interference plus

noise ratio (SINR) in the presence of colored noise and signal dependant interference. Bergin

et al[? ] started with linear frequency modulated (LFM) chirp signals and optimized the

signal to maximize the SINR in colored noise.
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A. Chaotic Map

The chaotic map that was used for optimization was

xj+1 (1) =
N
∑

i=2

p (i) xj (i)mod1

xj+1 (i) = xj (i+ 1) i = 2, 3 . . .N − 1

xj+1 (N) = xj (1)

ξ (j) = xj (1) + 0.5j = 1, 2 . . .M

(3)

where the p(i)s where parameters to be optimized. The xjs are real numbers; otherwise,

this map bears a strong resemblance to a shift register. For the real numbers, the mod 1

operation means divide by 1 and keep only the remainder. The modulus operation keeps

the map output between 0 and 1, and provides the nonlinear element necessary to produce

chaos.

The map dimension N was set to 6, resulting in N − 1 = 5 parameters to be optimized.

For each iteration of the map, designated by an increasing index j, the output signal ξ(j) is

set equal to xn(1) + 0.5. The range of xn(1) was 0 to 1, so the range of ξ(j) was 0.5 to 1.5

The total number of output samples M was at least 400. The map was started with random

initial conditions and iterated 4000 times to allow transients to die out.

It was necessary to convert the discrete map output to a continuous signal so that it could

be transmitted. For radar, it is also desirable for the signal to have a constant envelope,

because the power amplifier used to transmit the signal works more efficiently with a constant

envelope signal. The method used here was similar to a method used by Baranovski[? ],

where the map output determined the parameters for a defined basis signal. In this case,

the basis signal was a single cycle of a sine wave with an amplitude of 1 and a frequency

determined by ξ(j). The jth cycle of the output signal st(i) was

st (t) = sin (2πt/ [20ξ (j)]) t = 0, 1 . . . , t < 20ξ (j) (4)

The total number of samples for st was 1024. The number of samples per cycle of st varied

from 10 to 30, so the number of cycles for st varied, but the average number of cycles was

near 50.

Chaotic signals never repeat, so any advantage from using chaos should come when long

signals are used. In this paper, 10 pulses of 1024 samples each are used, with each pulse
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being created from a different piece of the chaotic trajectory. Because each pulse is different,

the actual reflected pulses are not averaged together. Rather, a reference copy of each

transmitted pulse is saved and cross correlated with the reflected pulse. The cross correlation

R2(x, y, τ) for 2 zero mean digitized signals x(j) and y(j) was calculated according to

R2 (x, y, τ) =

[

N
∑

j=0

x (j) y (j − τ)

]2

N
∑

j=0

x (j)
N
∑

j=0

y (j)
(5)

where τ is a discreet time. In addition, a Blackman window (as described above) was applied

to the reference signal. The cross correlation of each reflected pulse with its reference copy

were then be averaged together. An alternative procedure would be to send a single longer

pulse.

When it was desired to compare the result from the optimized map to the result that

would be obtained with a noise signal, a random noise signal was substituted for ξ(t) in

eq. ??. The noise signal could have a uniform distribution or a Gaussian distribution,

but in the situations studied here, the uniformly distributed noise was found to give better

performance.

The parameters p(i) were varied by a downhill simplex algorithm[? ]. The optimizations

in this paper were all nonlinear, so the optimization routines had many local minima, some

with roughly equivalent magnitudes. The local minimum problem might be addressed with

a simulated annealing algorithm, but computational issues are not addressed in this paper.

B. Complex Targets

Radar targets are rarely simple point objects. Complex targets produce a number of

reflections with different amplitudes and delays- a process that may be simulated with an

finite impulse response (FIR) filter. The question for this section is whether a chaotic signal

may be optimized to produce larger returns from a specific complex object.

The simulated targets were made up of 10 reflections with amplitudes randomly chosen

from a uniform distribution between 0 and 1, and delays randomly chosen from a uniform

distribution between 0 and 200. The signal reflected from the kth target was yTk(t)

yTk (t) =
NT
∑

i=0

aTk (i) st (t+ τTk (i)) (6)
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FIG. 3: Cross correlation between transmitted and reflected signals for the complex targets of eq.

??. Dotted lines are a 200 point running average of the cross correlation.

where Nτ = 10, aTk(i) was the reflection amplitude, and τTk(i) was the delay.

As a test of the selectivity of a chaotic signal, two different complex targets located at

different positions were simulated. The target signals yT1(t) and yT2(t) were both normalized

to have an rms amplitude of 1. The total reflected signal from the 2 targets was

ψ(t) = yT1 (t+ 1000) + yT2 (t+ 1500) (7)

The first thousand samples of the reflected signal ψ(t) were 0, and the end of ψ(t) was padded

with zeros so that it had a total length of 8192 samples. In order to show a comparison

to a well known radar signal, an LFM chirp signal c(t) was first substituted for the chaotic

map signal st(t) in eq. ??, and the targets were detected by cross correlating c(t) with the

resulting reflection ψ(t) to produce R2(ψ, ct, τ), which is plotted in Figure ??. The targets

do not produce single peaks because they contain multiple reflections.

Also plotted in fig. ?? is a 200 point running average of R2(ψ, ct, τ). The running average

(also known as the integrated reflection power) gives a better indication of the total power

actually reflected from the complex target, so in this work, the running average will be used

to detect targets. The use of the running average places a limit on the range resolution of

the signal.

C. Optimizing Ratio of One Target to Another

The object of this section is to match a chaotic signal to the target. I assume that I do not

have a model of the target available, only the signal reflected from the target. The chaotic
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FIG. 4: Optimizing for peak 2/peak 1 ratio. The solid line is the 200 point running average of

the radar cross correlation R2 for 2 complex targets when when the chaotic map is optimized for

target 2. The dashed line is the running average when a uniformly distributed random noise signal

is used in place of the chaotic signal ξ(t) in eq. ??, and the dotted line is the running average for

an LFM chirp. All data is normalized so that the height of peak 2 is 0 dB.

map of eq. ??-?? was first optimized to maximize the ratio of the integrated reflection power

from target 2 to the power reflected from target 1. In the minimization algorithm, range

sidelobes of the cross correlation function were also minimized; otherwise, the minimization

routine tended to produce periodic signals rather than chaotic signals. Figure ?? shows

a 200 point running average of R2(ψ, st, τ) when the parameters of the chaotic map were

optimized for target 2. The dashed line on fig. ?? shows a running average of the cross

correlation when the map signal ξ(t) is replaced by a uniformly distributed random noise

signal, while the dotted line shows a running average for an LFM chirp. All averages are

normalized so that the amplitude of peak 2 is 0 dB.

The relative heights of the integrated reflection power peaks for the 2 targets depend on

the signal that is used. The ratio of peak 2 height to peak 1 height when the optimized

chaotic signal is used is greater by 2.2 dB than when the random noise signal is used, and

by 4.9 dB compared to when the LFM chirp is used, so the optimization has caused the

chaotic signal to be better matched to target 2.

The chaotic map may also be optimized for target 1. Figure ?? shows the result for

target 1 optimization. Again, all curves are normalized so that the amplitude of peak 2 is 0

dB. The 200 point running average of the cross correlation when a chaotic signal optimized

for peak 1 is used is shown as a solid line. The average for the noise signal is shown by a
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FIG. 5: Optimizing for the peak 1/peak 2 ratio. The dashed line is the 200 point running average

of the radar cross correlation R2 for 2 complex targets when a uniformly distributed random noise

signal is used in place of the chaotic signal ξ(t) in eq. ??. The solid line is the running average

when the chaotic map is optimized for target 1, while the dotted line is the result for an LFM

chirp.

dashed line, while the average for the chirp is shown by a dotted line. When a chaotic signal

optimized for the ratio of peak 1 to peak 2 is used, the ratio is greater by 5.5 dB compared

to when a random signal is used, and greater by 2.7 dB compared to an LFM chirp.

D. Transmitting a Target Neutral Signal

Before the advent of high speed digital circuits, radars were analog, so the reference signal

was a copy of the transmitted signal that was delayed by an analog delay line. With high

speed circuits and digital memories, there is no reason that the transmitted signal and the

reference signal have to be identical. In this section, I transmit a target-neutral chaotic

signal, which is not optimized for any specific target. The reflected signal from the target is

cross correlated with a reference signal that is optimized for a specific target.

The immediate practical advantage of this approach is that I have 1 signal that I transmit

for any target. I only need transmit this signal once, and then I can optimize for a specific

target offline. I can also compare the reflected signal to reference signals that have been

optimized ahead of time for specific targets, allowing me to identify known targets.

In Figure ??, a target neutral chaotic signal was transmitted, and the reference signal

was optimized to maximize the amplitude of the ratio of the peak for target 2/target 1. The
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FIG. 6: Running average of the cross correlation R2 between the reflected signal ξ(t) and the

optimized reference signal rt(t) when the reference signal is optimized to maximize the ratio of

peak 2 to peak 1 (solid line). The use of a reference signal different than the transmitted signal

causes a shift in the peak locations. The dashed line shows the result when the reference and

transmitted signals were identical optimized chaotic signals.

location of the peaks in fig. ?? has been shifted because the reference does not match the

transmitted signal, so this while this method may be useful for indicating the presence of a

specific target, it is not as good for a precise range determination.

In fig. ??, the ratio of peak 2 to peak 1 has been improved by 16 dB compared to when

the transmitted and reference signals were optimized but identical. Peak 1 is low enough

that the signal to interference plus noise ratio (SINR) is no longer determined by the height

of peak 1. Looking at the background peaks, the SINR for peak 2 is now about 10 dB,

compared to 4 dB when transmitted and reference signals were identical and optimized, 2

dB when the 2 signals were generated by uniform noise (fig. ??), and 1 dB for an LFM chirp

(also seen in fig. ??).

Using the same transmitted signal, it is also possible to optimize the reference signal to

maximize the ratio of peak 1 to peak 2. Figure ?? shows the result of this optimization.

Once again, the location of the peaks has been shifted. The ratio of peak 1 to peak 2 in

fig. ?? is 12 dB, compared to about 4 dB when the transmitted and reference signals were

optimized but identical.

The use of nonidentical transmitted and reference signals can highlight the presence of

one target over another. This method could be useful for identifying different closely spaced
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FIG. 7: Running average of the cross correlation R2 between the reflected signal ξ(t) and the

optimized reference signal rt(t) when the reference signal is optimized to maximize the ratio of

peak 1 to peak 2 (solid line). The use of a reference signal different than the transmitted signal

causes a shift in the peak locations. The dashed line shows the result when the reference and

transmitted signals were identical optimized chaotic signals.

targets. There is a complication here; if the target rotates, the FIR filter representation of

the target can change, so this method is probably best applied to slowly moving targets.

IV. TARGET WITH CLUTTER

Detecting a complex target in clutter is similar to the problem of optimizing a signal for

a particular target. Clutter in this situation is any object that we are not interested in- it

may be a target that is close to the target that we want to detect. If we think of the clutter

as just another target, then the problem is similar to the target selection problem discussed

above.

A. Target in Extended Clutter

Clutter caused by scattering from the ground or the sea surface can have a much larger

spatial extent than the target. Extended clutter was simulated by adding together 200

reflections of st(t) with different amplitudes and delays ranging from 0 to 2000 samples.

The reflection amplitudes and delays for the clutter are distributed according to a Gaussian

random distribution. As before, the target object contained 10 reflections with delays from

0 to 200 samples, distributed according to a uniform random distribution. The target signal
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FIG. 8: Optimizing a signal to maximize the return from a complex target (at t = 2000) in extended

clutter. The solid line is a 200 point running average of the cross correlation for the optimized

chaotic signal, the dashed line is for a uniformly distributed noise signal used in place of the chaotic

signal, and the dotted line is for an LFM chirp.

yT1(t) and the clutter signal yC1(t) were added to produce the reflected signal

ψ (t) = 0.5yT1 (t+ 3000) + yC1 (t+ 2000) (8)

Based on the total power in the signal compared to the total power in the clutter signal

for the same time period, the signal to interference plus noise ratio (SINR) for ψ(t) was

estimated to be 6 dB.

Figure ?? shows a 200 point running average of R2(ξ, st, τ) in extended clutter when

the transmitted and reflected signals were identical. The solid line is for an optimized

chaotic signal, the dotted line corresponds to an LFM chirp, and the dashed line is when

a uniformly distributed random signal is used in place of the chaotic signal ξ(t) in eq. ??.

All plots were normalized so that the value of the peak at the target location (point 3000)

was 0 dB. Optimizing the chaotic signal decreases the average of the cross correlation with

clutter reflection and increases the cross correlation with the target reflection. If the SINR

is measured by measuring the interference at the highest point in the clutter signal, then

the improvement in SINR for the optimized chaotic signal compared to the noise signal is

13 dB, and compared to the LFM chirp the improvement is 21 dB. It is actually not obvious

that there is a target reflection in the noise or LFM chirp signals, as the integrated reflected

power at the target location is below the clutter level.

The optimized chaotic signal still performs better than the noise or chirp signals if the

clutter distribution is uniform, but the differences are not as large. For uniform clutter, the
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FIG. 9: The solid line is a 200 point running average of the cross correlation R2 for a complex

target in extended clutter when the transmitted and reference signals are the same optimized

chaotic signal. The dashed line is when a target-neutral signal is transmitted and the reference

signal is optimized.

SINR for the optimized chaotic signal is 5.7 dB better than the SINR for the noise signal,

and 8.9 dB better than for the LFM chirp signal.

The SINR ratio is actually not as good for this extended clutter when a target-neutral

signal is transmitted and the reference signal is optimized. Figure ?? shows the running

average of the cross correlations when the reference signal is the same as the transmitted

signal, and when it is different.

In fig. ??, using a target-neutral transmitted signal and optimizing the reference signal

yields a SINR that is 2.6 dB worse than when the transmitted and reference signals are the

same optimized chaotic signal. The target-neutral signal is still better than the noise or

chirp signals in fig. ??, however, and the same transmitted signal can be used for different

targets, so that only the reference signal needs to be optimized.

It reasonable to ask, if a target model is available, why not use that model explicitly,

rather than optimize a chaotic signal for the target. In order to test this idea, the signal

sm(t) was generated from a model of the target. The model was generated in the same

manner as eq. ??, by adding copies of the signal st(t) with the same delays and amplitudes

as used for the target. For this simulation, st(t) was generated by substituting a uniformly

distributed noise signal for the chaotic signal ξ(t) in eq. ??.

The cross correlation was performed in the usual manner, using the target model signal
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FIG. 10: The solid line is a 200 point running average of R2 for a complex target in extended

clutter when the transmitted and reference signals are the same optimized chaotic signal. The

dashed line is when a transmitted signal based on uniform noise is used with a reference signal

based on an explicit model of the target.

sm(t) in place of the transmitted signal st(t) as a reference. The 200 point running average of

the cross correlation is compared to the running average when the transmitted and reference

signals are identical optimized chaotic signals in Figure ??. The optimized chaotic signal

still outperforms the model-based signal, with an SINR that is 11 dB better than the model

based signal. The model-based signal is well matched to the target, but it does not take the

clutter into account. The optimized chaotic signal is optimized to produce the maximum

contrast between the target and the clutter.

If the target moves (without rotating), the same optimized chaotic signals can be used, as

long as the clutter stays the same. Figure ?? shows a running average of the cross correlation

when the target location has changed from 3000 to 2000, but all other signals stayed the

same as in fig. ??.

The SINR for the target is still > 0 dB when the target location has moved, as is seen

in fig. ??, but when the target is at t = 2000, the SINR when the target-neutral chaotic

signal with an optimized reference is used is 3 dB greater than when the transmitted and

reference signals are identical
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FIG. 11: The solid line is a 200 point running average of R2 for a complex target in extended

clutter when the transmitted and reference signals are the same optimized chaotic signal. The

dashed line is when a target-neutral signal is transmitted and the reference signal is optimized.

The difference between fig. ?? and fig. ?? is that in fig. ??, the target is at t = 2000, while in fig.

??, the target was at t = 3000.

B. Effects of Ambiguity

The results for the effects of the different signals in clutter may be partly explained by

the ambiguity functions of the different signals, and how they interact with the clutter. In

the example described above, all of the targets are stationary, so the goal is to maximize the

amount of energy returned by the target compared to the amount of energy returned by the

clutter for zero Doppler shift. The time and Doppler components of the ambiguity function

are not independent; for signals with the same frequency span and time length, the total

volume under the ambiguity surface is the same[? ? ]. Figure ?? shows ambiguity functions

for scattering from the clutter for the optimized chaotic signal and the noise signal used in

fig. ??.

Figure ?? was computed by comparing the transmitted signal to the signal reflected from

the clutter only. The total volume under both ambiguity functions in fig. ?? is the same,

but it can be seen that a much larger fraction of the volume for the chaotic signal is at

nonzero Doppler shifts. The cross correlation essentially takes a slice through the ambiguity

function at constant Doppler, so the optimized chaotic signal reduces the energy returned

by the clutter at 0 Doppler, improving the SINR. The chirp signal reflected from the clutter

also returns a larger portion of its energy at 0 Doppler shift, but the result is not as obvious

20



-20

-15

-10

-5

0

!
2
 (

d
B
)

-0.010 0.000 0.010

"
d

-200

0

200

t

(b)

-20

-15

-10

-5

0

!
2
 (

d
B
)

-0.010 0.000 0.010
"

d

-200

0

200

t

(a)

FIG. 12: .Clutter ambiguity function χ2 for the chaotic signal used in fig. ??(a) and the noise

signal used in fig ??(b). αd is the fractional Doppler shift.

from a plot.

To perform a simple comparison of reflected signal power and reflected noise power, the

0 Doppler cross correlations for target only (R2(yT , st, τ) ) or clutter only (R2(yC , st, τ) were

both computed and normalized by the total volume under the corresponding ambiguity

functions, AT or AC . Using this normalization, the integrated value of R2(yT , st, τ)/AT was

compared to the integrated value of R2(yC , st, τ)/AC for all 3 signals. For the optimized

chaotic signal, the signal power to noise power ratio computed in this way was 1.7; for the

noise and chirp signals, this ratio was 1.37. This is only a crude estimate of the actual signal

to clutter ratio because the clutter and target reflections cant be separated in this way.
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V. CONCLUSIONS

While the work above leaves some practical questions unanswered, it does show that

a simple chaotic system can generate many different chaotic signals, which are useful for

different applications. It also seems likely from the work above that chaotic signals are most

likely to be useful for complex targets. When studying the application of chaotic signals to

radar, it is necessary to consider many more chaotic systems than the few that are usually

studied (the Bernoulli shift map, the tent map, the logistic equation, etc.). Outside of a few

simple cases, there is as yet no systematic method to design chaotic systems for particular

applications. The optimization methods used above have the disadvantage that they are

computationally intense and they are slow.

The chaotic map systems I considered here would require digital synthesis, but it has

been suggested that one possible advantage of chaotic systems for radar is that one could

generate broad band signals with simple analog hardware [? ? ? ? ], and microwave chaotic

circuits are being developed.
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